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Individual differences in frontoparietal plasticity in humans
Austin L. Boroshok 1✉, Anne T. Park1, Panagiotis Fotiadis 2, Gerardo H. Velasquez 1, Ursula A. Tooley 1,2, Katrina R. Simon 3,
Jasmine C. P. Forde1, Lourdes M. Delgado Reyes1, M. Dylan Tisdall4, Dani S. Bassett5,6,7,8,9,10, Emily A. Cooper11 and Allyson P. Mackey1

Neuroplasticity, defined as the brain’s potential to change in response to its environment, has been extensively studied at the
cellular and molecular levels. Work in animal models suggests that stimulation to the ventral tegmental area (VTA) enhances
plasticity, and that myelination constrains plasticity. Little is known, however, about whether proxy measures of these properties in
the human brain are associated with learning. Here, we investigated the plasticity of the frontoparietal system by asking whether
VTA resting-state functional connectivity and myelin map values (T1w/T2w ratios) predicted learning after short-term training on
the adaptive n-back (n= 46, ages 18–25). We found that stronger baseline connectivity between VTA and lateral prefrontal cortex
predicted greater improvements in accuracy. Lower myelin map values predicted improvements in response times, but not
accuracy. Our findings suggest that proxy markers of neural plasticity can predict learning in humans.
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INTRODUCTION
Neuroplasticity was canonically defined as the process of brain
change, but it can also be defined as the brain’s potential to
change in response to new experiences, and to learn. Animal
studies at the level of cells and synapses have made substantial
progress in identifying factors that facilitate and constrain
neuroplasticity as the potential to change1. Modulatory neuro-
transmitters, including dopamine, have been shown to increase
plasticity2. In a landmark study, stimulation of the ventral
tegmental area (VTA), a key source of dopamine for the cortex,
restored juvenile-like plasticity in the auditory cortex of adult
animals3. Conversely, myelination has been shown to restrict
plasticity4,5. Over 50% of myelin in the cortex is associated with
parvalbumin-positive (PV+) inhibitory interneurons6,7, which are
cells that limit synaptic remodeling8. Together, these studies
suggest that individual differences in dopamine system connec-
tivity and myelination may contribute to variance in humans’
ability to learn.
The frontoparietal system (FPS) may be a particularly useful

target of research on individual differences in plasticity in humans,
as the FPS has expanded dramatically over the course of
evolution9,10. The FPS is characterized by a dense expression of
dopamine receptors and is lightly myelinated11–13. The FPS is also
thought to be highly plastic due to its protracted develop-
ment14,15 and high interindividual variability16. High FPS plasticity
may be essential for its role as the “multiple demand network”17

and its ability to flexibly adapt its function to meet novel task
demands, including working memory and reasoning18,19.
Some work has been done to understand the process of FPS

plasticity: how the FPS changes in response to practice. Long-term
reasoning and working memory practice leads to decreases in
functional activation in the FPS20–27, and increased functional and
structural connectivity between regions of the FPS28–32. FPS can

also change over the short-term. Indeed, a few studies have
shown that 30–60min of working memory practice is sufficient to
cause decreases in FPS activation33–35. In a motor learning task,
greater learning was associated with temporal flexibility of
functional modules36 and training-related release of coordinated
activity across task-extraneous areas37.
However, variability in the FPS’ potential to change is less

understood. Investigating variability in the FPS’ potential for
change may be important for understanding why some indivi-
duals benefit more from educational or cognitive interventions.
One study showed that greater gray matter volume in the lateral
and medial prefrontal cortex predicted greater learning over five
to six weeks of practice with a cognitively complex video game38.
Across a broader set of learning tasks, including perceptual and
motor learning, greater learning over days or weeks is predicted
by greater cortical thickness in task-relevant regions39, greater task
activation during the to-be-learned task40–42 and during feedback
on a separate task43, and stronger functional connectivity within
task-relevant regions44,45. Long-term training studies, however, are
not well-suited to investigating individual differences in the brain’s
potential to change. Baseline brain measures may not strongly
predict learning outcomes in long-term training studies because
variability in learning outcomes over the course of several weeks
or months are more likely to be shaped by differences in practice
intensity, or by differences in lifestyle factors that influence brain
health, including sleep and stress46,47. It may be better to instead
study variability in short-term learning. One study found that
positive functional connectivity within the FPS and in other task-
positive systems predicted greater learning from 80–90min of
working memory practice48. However, these measures are difficult
to link to cellular markers of plasticity.
Here, we focused on plasticity as a potential to change rather

than plasticity as a process. We examined whether MRI-based
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proxy measures of FPS plasticity at baseline predicted individual
differences in learning following short-term, adaptive working
memory training. We identified FPS regions involved in working
memory with an n-back task, a commonly-used localizer for
frontoparietal activation49. As a proxy for dopamine system
connectivity, we analyzed resting-state functional connectivity
between the VTA and task-active regions. Resting-state functional
connectivity is thought to reflect a prior history of coactivation
between regions, without confounding effects of task perfor-
mance50. As a proxy measure for myelin, we examined “myelin
map” values, defined as the ratio of T1-weighted (T1w) to T2-
weighted (T2w) signal intensities, in task-active regions51,52. We
tested two hypotheses: (1) stronger functional connectivity
between the VTA and FPS regions at baseline predicts greater
learning following training and (2) lower myelin map values in FPS
regions at baseline predict greater learning following training. To
evaluate the specificity of the results, we also investigated VTA
connectivity and the T1w/T2w ratio in regions we did not expect
to be selectively involved in the training task: primary visual cortex
and primary motor cortex. Additionally, to explore plasticity as a
process, we explored changes in FPS structure and function, and
whether these brain changes are related to learning.

RESULTS
Our analyses included data from 46 adults (30 female, ages 18–25)
who completed MRI scanning before and after fifty minutes of
n-back training (Fig. 1). Five frontoparietal regions of interest
(ROIs) were identified based on the n-back fMRI task during the
pre-training scan (2-back >1-back contrast): left and right lateral
prefrontal cortex, bilateral medial prefrontal cortex, bilateral
parietal cortex, and striatum (Fig. 5; see Methods). We extracted
two neuroimaging measures from each ROI: VTA resting-state
functional connectivity and T1w/T2w ratio (see Methods section
for processing parameters). We used linear models to examine
how resting state functional connectivity (rsFC) between VTA and
each ROI, and T1w/T2w ratios in each ROI, predict learning gains
following training (change in accuracy and response time [RT] on
the out-of-scanner pre- and post-training n-back task).
The VTA connectivity models included the following covariates:

age, sex, baseline n-back task performance, motion during the
baseline resting-state fMRI scan, and the number of volumes
acquired during the baseline resting-state fMRI scan. The T1w/T2w
ratio models included the following covariates: age, sex, and
baseline n-back task performance. All results underwent FDR-
correction in R for 28 tests (7 ROIs [5 task-based, 2 control]), 2
learning measures [accuracy, response time], and 2 neural
measures [VTA rsFC, T1w/T2w ratio]. All statistical analyses were
performed using R (version 4.05) and RStudio (version 1.4.1106)
software (R Foundation for Statistical Computing, Vienna, Austria).

Working memory performance improved with training
We considered two behavioral measures of learning: accuracy
change and response time (RT) change on the out-of-scanner pre-
and post-training n-back task (Fig. 1). Fifty minutes of training led
to small but significant increases in accuracy and decreases in
response times (Table 1, Fig. 2b). However, there was considerable

variability in training gains among individuals (Fig. 2a–c).
Individuals with lower baseline accuracy improved more on
accuracy following training (β=−0.284, 95% CI [−0.493, −0.076],
p= 0.009). Individuals with slower baseline response times
showed swifter response times following training (β=−0.389,
95% CI [−0.563, −0.215], p < 0.001). Gains in accuracy were not
associated with improvements in response times (β= 0.050, 95%
CI [−0.045, 0.145], p= 0.291). Improvements in learning were not
significantly associated with age (accuracy: β=−0.003, 95% CI
[−0.008, 0.002], p= 0.217; RT: β= 0.008, 95% CI [−0.008, 0.023],
p= 0.306) or sex (accuracy: β= 0.019, males higher, 95% CI [0.000,
0.039], p= 0.055; RT: β= 0.002, 95% CI [−0.061, 0.065], p= 0.955),
controlling for baseline performance. The highest n-back condi-
tion reached during training was not used in brain analyses
because the distribution was significantly non-parametric
(Shapiro–Wilk: W= 0.81, p < 0.001), due to a small number of
participants reaching very high conditions (Fig. 2c).

Plasticity as potential
Stronger VTA connectivity at baseline predicted greater improve-
ments in accuracy. We used functional connectivity between the
VTA and the task-based FPS regions of interest as a proxy measure
for dopamine system connectivity (Fig. 3a). Consistent with the
hypothesis that greater strength of dopamine system connectivity
is associated with greater learning, we found that stronger resting-
state functional connectivity between the VTA and the bilateral
LPFC at baseline predicted greater improvements in accuracy (Fig.
3b, c: left LPFC: β= 0.067, 95% CI [0.011, 0.123], p= 0.020, pFDR=
0.068; right LPFC: β= 0.086, 95% CI [0.027, 0.146], p= 0.006;
pFDR= 0.029), controlling for baseline accuracy, age, sex, motion,
and total number of volumes. The relationship between VTA-LPFC
connectivity and accuracy gains survived FDR correction for 28
tests (7 ROIs, 2 learning measures, and 2 neural measures) for the
right LPFC but not the left LPFC. There were no significant
associations between accuracy gains and VTA connectivity with
the mPFC (β= 0.004, 95% CI [−0.057, 0.064], p= 0.906, pFDR=
0.906), the parietal cortex (β= 0.019, 95% CI [−0.042, 0.079], p=
0.536, pFDR= 0.578), or the striatum (β= 0.050, 95% CI [−0.008,
0.108], p= 0.091, pFDR= 0.213). Further, there were no significant
associations between VTA-FPS connectivity and changes in
response times in any ROI (left LPFC: β=−0.152, 95% CI
[−0.329, 0.025], p= 0.090, pFDR= 0.213; right LPFC: β=−0.127,
95% CI [−0.322, 0.069], p= 0.198, pFDR= 0.298; mPFC: β=
−0.119, 95% CI [−0.303, 0.065], p= 0.199, pFDR= 0.298; parietal:
β=−0.136, 95% CI [−0.316, 0.043], p= 0.133, pFDR= 0.248;
striatum: β=−0.084, 95% CI [−0.276, 0.108], p= 0.383, pFDR=
0.450). There were no significant associations between VTA
connectivity and accuracy or response times at baseline.

Lower T1w/T2w ratios at baseline predicted greater improvements in
response times. We used the ratio of T1w/T2w intensities as a
proxy measure for myelination (Fig. 4a). Individuals with lower
baseline T1w/T2w ratios in all five FPS regions of interest showed
greater improvements in response times (Fig. 4b–f: left LPFC: β=
0.423, 95% CI [0.127, 0.719], p= 0.006, pFDR= 0.029; right LPFC:
β= 0.425, 95% CI [0.131, 0.718], p= 0.006, pFDR= 0.029; mPFC:
β= 0.318, 95% CI [0.016, 0.620], p= 0.039, pFDR= 0.122; parietal

Fig. 1 Schematic of study design. The study protocol began with a five-minute introduction to the n-back working memory task. Participants
completed two MRI sessions consisting of structural and functional scans before and after 50 minutes of n-back training. Prior to and
following the 50-min training period, participants completed a 15-min assessment to measure performance on the n-back task.
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cortex: β= 0.410, 95% CI [0.112, 0.708], p= 0.008, pFDR= 0.032;
and striatum: β= 0.411, 95% CI [0.138, 0.684], p= 0.004, pFDR=
0.029), while controlling for baseline response times, age, and sex.
T1w/T2w ratios were not associated with accuracy improvement
in any of the task-based ROIs (left LPFC: β= 0.075, 95% CI [−0.018,
0.169], p= 0.112, pFDR= 0.223; right LPFC: β= 0.075, 95% CI
[−0.018, 0.169], p= 0.112, pFDR= 0.223; mPFC: β= 0.054, 95% CI
[−0.041, 0.149], p= 0.261, pFDR= 0.348; parietal: β= 0.068, 95%
CI [−0.026, 0.163], p= 0.149, pFDR= 0.261; striatum: β= 0.078,
95% CI [−0.009, 0.164], p= 0.077, pFDR= 0.213). Lower baseline
T1w/T2w ratios in striatum were related to faster response times at
baseline (β= 0.491, 95% CI [0.004, 0.979], p= 0.048), while
controlling for age and sex. Associations between T1w/T2w ratios
and baseline response times in the other FPS regions of interest
were not significant (left LPFC: β= 0.467, 95% CI [−0.069, 1.002],
p= 0.086; right LPFC: β= 0.444, 95% CI [−0.092, 0.979], p= 0.102;
mPFC: β= 0.318, 95% CI [−0.228, 0.863], p= 0.246; parietal cortex:
β= 0.469, 95% CI [−0.066, 1.004], p= 0.084). T1w/T2w ratios were
not associated with accuracy at baseline.

Sensitivity analysis. To examine the specificity of the predictions
in the frontoparietal system, we examined two control ROIs that
we did not expect to predict learning: primary visual and motor
cortex. Resting-state functional connectivity between the VTA and
visual and motor ROIs did not predict changes in accuracy or
response time following training. Baseline T1w/T2w ratios in visual
and motor ROIs were not associated with changes in accuracy.
However, lower baseline T1w/T2w ratios were associated with
greater improvements in response time (visual: β= 0.407, 95% CI
[0.150, 0.665], p= 0.005, pFDR= 0.01; motor: β= 0.426, 95% CI
[0.136, 0.715], p= 0.003, pFDR= 0.01).

Plasticity as a process: Brain activation changes with training were
small and not strongly associated with learning. We did not
observe training-related changes in VTA connectivity, or in T1w/
T2w ratios (Supplementary Table 1). We also did not observe
training-related changes in functional activation (Supplementary
Fig. 1). Brain changes were not associated with learning.
Relationships among brain change measures and learning for all
regions of interest are shown in Supplementary Fig. 2.

DISCUSSION
We investigated whether individual differences in the structure
and function of the frontoparietal system predicted learning
potential in healthy human adults. We focused on proxy measures
of two properties that have been shown to influence the brain’s
ability to change in animal models: ventral tegmental area (VTA)
functional connectivity and myelin maps. Adults, on average,
improved their accuracy and response times after 50min of
practice on an adaptive n-back task, and there were large
individual differences in learning. Improvements in accuracy were
positively associated with resting-state functional connectivity
between the VTA and the bilateral lateral prefrontal cortex (LPFC)
at baseline. Improvements in response times were negatively
associated with myelin map values for all frontal, parietal, and
striatal regions of interest.
The finding that stronger functional connectivity between the

VTA and the LPFC predicted greater accuracy gains is consistent
with work in animal models showing that dopamine promotes
synaptic plasticity3,53,54. One interpretation of our findings is that
individuals with stronger connectivity between the dopamine
system and the LPFC are better able to learn an LPFC-dependent
task (i.e., a working memory task)55 because they have greater
synaptic plasticity in these regions, or are better able to modulate
synaptic plasticity. Indeed, a few experimental and computational
modeling studies have suggested that synaptic plasticity in the
LPFC is key for working memory21,56–58. Another interpretation isTa
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that individuals with greater top-down control from the LPFC to
the VTA are better able to learn because they can better
upregulate a range of motivational processes including effort. A
third interpretation is that greater VTA-LPFC connectivity reflects a

history of coactivation of these regions, perhaps because an
individual has more experience learning novel prefrontally-
dependent tasks. In rats, the VTA and the PFC show simultaneous
and significant increases in firing rate at the same phases of a

Fig. 2 Individual differences in learning gains. a Individual differences in out-of-scanner n-back accuracy and response time (averaged across
conditions) changes. Each colored line represents an individual participant. b Task performance on the out-of-scanner pre- and post-training n-
back task, measured by accuracy (or percentage of correct trials), averaged across task conditions (left panel) and response time (in seconds)
averaged across tasks conditions (right panel). Vertical dashed lines represent mean values. c Highest n-back condition achieved during training.

Fig. 3 Correlations between functional connectivity between the ventral tegmental area (VTA) and the lateral prefrontal cortex (LPFC)
and improvements in accuracy. a Schematic of correlation between BOLD time series at rest of regions of interest. Colored lines represent the
time series of positive functional connectivity between the VTA and the LPFC at rest. b Positive relationships between baseline VTA-left LPFC resting-
state functional connectivity (rs-FC) and accuracy gains on the n-back working memory task. c Positive relationships between baseline VTA-right
LPFC rs-FC and accuracy gains on the n-back working memory task. Relationships between connectivity and accuracy gains did not survive FDR
correction over 28 tests (7 ROIs [5 task-based, 2 control], 2 learning measures [accuracy, response time], and 2 neural measures [VTA rsFC, T1w/T2w
ratio]). Statistical models control for age, sex, motion, and baseline working memory accuracy. Asterisks denote p-values that survive FDR-correction.
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learning task59. In the present study, it is not the case that VTA-
LPFC connectivity is simply a marker of better working memory:
VTA-LPFC connectivity was not associated with baseline working
memory, and all statistical models predicting working memory
change with VTA-LPFC connectivity controlled for baseline work-
ing memory. However, resting-state fMRI cannot distinguish
between top-down control of the VTA by the LPFC and bottom-
up innervation of the LPFC by the VTA, and it also cannot
distinguish between dopamine system connectivity and excita-
tory, or even inhibitory, transmission. Although rs-fMRI leaves
open some questions about possible interpretations of our results,
VTA connectivity is nevertheless a promising marker of how well
adults will learn a frontoparietal task, with potential broader
extensions to measuring individual differences in plasticity across
other brain systems. Convergent data from PET imaging or
pharmacological manipulation of dopamine would strengthen
these results.
The observation that individuals with lower T1w/T2w ratio

values in the FPS (a proxy for myelination in this system) at
baseline showed the biggest improvements in response time
following training is consistent with work in animal models
suggesting that lower myelination is associated with greater

plasticity4,60. Less-myelinated individuals were able to improve
their response time without sacrificing their accuracy on the n-
back task, even controlling for baseline performance, alleviating
concerns about a speed-accuracy tradeoff effect. Thus, it was not
the case that individuals were simply responding faster and less
carefully due to increased familiarity with the task or decreased
effort following training, which would have been indicated by a
high error rate. It remains unclear why our two proxy measures of
neuroplasticity were differentially related to the two learning
measures. It is possible that the brain measures reflected
differences in strategy or approach to the learning task, or that
the behavioral outcome measures were sensitive to different
learning processes. More work is needed to understand why some
individuals show accuracy gains and others show speed gains. We
also observed that associations between T1w/T2w ratios and
improvements in response time were significant in primary visual
and motor regions in addition to our FPS regions of interest. This
may indicate that this effect is not specific to the FPS as expected
and rather is representative of a more global property of cortex.
Training did not lead to changes in task activation, VTA

functional connectivity, or T1w/T2w ratios. Again, as the n-back
task was designed to serve as a localizer for investigations of FPS

Fig. 4 Correlations between frontoparietal T1w/T2w signal intensity ratio and training-related changes in response time. a Schematic of
T1 signal intensity divided by T2 signal intensity, as a proxy measure for myelination. b Task-based regions of interest (b–f) Positive
relationships between baseline frontoparietal T1w/T2w signal intensity ratio and training-related changes in response times on the n-back
working memory task. Axial slice is shown at z= 22. Statistical models control for age, sex, and baseline working memory response times.
Asterisks denote p-values that survive FDR-correction.

A.L. Boroshok et al.

5

Published in partnership with The University of Queensland npj Science of Learning (2022)    14 



potential for change, the task was not intended to be particularly
sensitive to training-related improvements in accuracy. However,
it is possible that changes from short-term learning were too small
to be reflected in the neural measures we selected. Additionally,
training-related changes in neural measures were not associated
with learning gains. It is possible that individuals take different
strategies to learn the n-back task, and these strategies result in
heterogeneous changes in structure and function. Indeed,
interindividual variation in learning strategies has been demon-
strated to modulate underlying brain structure in a number of
learning studies61–64. One such study showed that individual
differences in cognitive style and encoding strategies explained
significant variability in task-related functional activation during a
memory retrieval task in a number of brain regions including
frontal and parietal areas62. Another study found similarly strong
strategy-dependent changes in lateral prefrontal task-related
activation during a working memory task64. Further work in this
area is needed to better understand the contributions of
individual strategy during short-term learning.
The current study has several limitations. First, the observed

relationship between VTA-Right LPFC connectivity and learning
survived correction for multiple comparisons, but the relationship
between VTA-Left LPFC connectivity and learning did not. Thus,
replication of these results is necessary. Second, we conducted
analyses that were narrowly tailored to our specific hypotheses
about plasticity, but the multimodal data set that we have
collected lends itself to additional data-driven analyses, for
example asking whether baseline connectivity within the FPS
predicts learning48. We share all behavioral and imaging data to
facilitate this future work. Third, the study was designed to
characterize how brain features predict individual differences in
learning, not to test for main effects of working memory training
on neural measures, so it did not include a control group. A
control group that practiced an unrelated task, for example an
implicit learning task that does not rely on the FPS, could further
illuminate the specificity of the relationships presented here. For
example, a control group could be used to answer the questions:
“Does VTA-LPFC connectivity predict accuracy gains on a task that
does not engage LPFC?” or “Do T1w/T2w ratios predict swifter
response times on a task that does not engage LPFC?” Fourth, we
only collected five minutes of resting-state fMRI data from each
participant, which may limit the reliability of the VTA-LPFC
connectivity findings65. Fifth, our sample included predominantly
undergraduate and graduate students, so it may not reflect the
variability in cognition and learning that is present in the
American population or in the broader world. Finally, learning
during the working memory task likely depends not only on the
plasticity of the frontal, parietal, and striatal regions, but also on
individual differences in effort, attention, strategy choice, or
susceptibility to fatigue.
In sum, individuals with stronger connectivity between VTA and

lateral prefrontal cortex, as well as individuals with lower myelin
map values, showed greater learning from short-term practice.
Our study underscores the opportunities and challenges of using
neuroimaging tools to measure frontoparietal system plasticity in
humans. Better measures of human brain plasticity would enable
investigations of the experiences and lifestyle factors that increase
plasticity in adulthood, for example stress66, sleep67,68, or novel
positive experiences69,70. MRI measures of plasticity are also
necessary for tackling questions about how early life experiences
shape plasticity, with implications ranging from learning in school
to response to cognitive behavioral therapies. Therefore, a deeper
understanding of human neuroplasticity may help optimize
neurocognitive, educational, and psychological interventions that
aim to improve well-being and experience across the lifespan.

METHODS
Ethics statement
This study was approved by the University of Pennsylvania’s Institutional
Review Board. Written informed consent was obtained from all
participants.

Participants
Participants between the ages of 18 and 25 years were recruited through
the University of Pennsylvania study recruitment system, as well as
through community and university advertisements. Inclusion criteria
included fluency in English, no history of psychiatric or neurological
disorders or learning disabilities, no current or recent illegal substance use,
and no contraindications for MRI.
In total, MRI scans were completed for 61 participants. Forty-six

participants were included in the final sample (M= 21.39 years, SD= 1.91
years; 63% female), which met a predetermined target set by a power
analysis indicating that such a sample size would have 80% power to detect
a correlation between brain measures and learning of r= 0.4. Participants
were excluded for falling asleep during the n-back scan (n= 3), low
performance on the control condition of the fMRI n-back task (< 90%
accuracy on the 1-back condition; n= 5), failure to advance beyond the
initial working memory condition during the 50-min training period (n= 1),
recent illegal substance use not reported during screening but reported
during participation (n= 1), inability to tolerate scanning (n= 1), and
technical issues (total n= 4; button box malfunction [n= 2], coil error [n=
1], no behavioral log files [n= 1]). The final sample was ethnically and
racially diverse (24% Asian, 33% Black, 17% Hispanic/Latino, 4% Multi-Racial,
and 19% White; one participant chose not to report their race and ethnicity).
77% of participants were undergraduate students and 18% were graduate
students at the University of Pennsylvania.

Experimental design and statistical analyses
Learning measure. Participants completed an auditory n-back task outside
of the scanner: once before and once after adaptive n-back training (Fig. 1).
The task consisted of four blocks of trials at each of 3 cognitive conditions:
2-, 3-, and 4-back (alternating in that order) for a total of 12 blocks. Each of
the 12 blocks contained 24 trials. Stimuli were drawn from a pool of eight
consonants (‘C’, ‘D’, ‘G’, ‘K’, ‘P’, ‘Q’, ‘T’, and ‘V’). Within each condition,
approximately 15% of all trials were targets. At the beginning of each
block, the current n-back condition was presented in the center of a black
screen for 2500ms, after which the response options “YES” and “NO”
appeared. Then, an audio clip of a single consonant played for 500ms.
Participants were given 2000 ms to respond via button press on a standard
keyboard: “F” for “YES” responses and “J” for “NO” responses. Each block
was followed by 10 s of rest. Feedback was provided such that accurate or
inaccurate responses prompted the correct response option to be
highlighted in green or red, respectively. Two primary indices of learning
were analyzed for ease of interpretation: (1) the change in task accuracy
across trials, as defined by the percentage change of correctly-answered
trials, and (2) the change in response time across trials.
Participants completed a 50-min adaptive n-back task during the

training period. The 50-min duration was selected based on studies that
have shown fMRI activation changes following 30–60min of training33–35,
and because longer training would likely induce fatigue. The training
session was self-paced. Syllables were used during the training period, in
contrast to the pre- and post-training assessments, to reduce the likelihood
that learning was based on perceptual changes alone. Stimuli were drawn
from a pool of eight syllables (‘ba,’ ‘cha,’ ‘da,’ ‘fa,’ ‘ga,’ ‘ja,’ ‘ka,’ and ‘la’).
Within each condition, approximately 13% of all trials were targets. The
training session began at the 2-back condition; participants progressed to
the next-highest task condition if they finished blocks at or above 90%
accuracy, remained at the same task condition if they finished blocks with
71–89% accuracy, and regressed to the next-lowest condition (min: 2-back)
if they finished blocks with 70% accuracy or below. Each block at each
condition consisted of 24 trials. Participants completed a mean of 745 trials
(31.1 blocks) and reached, on average, the 5-back condition (min: 3-back,
max: 13-back) during the training period.

Neuroimaging data acquisition. Imaging was performed at the Center for
Magnetic Resonance Imaging & Spectroscopy at the University of
Pennsylvania with a Siemens MAGNETOM Prisma 3T MRI Scanner
(Siemens, Erlangen, Germany) using a 32-channel head coil. Each
participant underwent two MRI scans: the first scan was completed before
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the n-back training period and the second scan was completed following
training. During both the pre- and post-training scan sessions, participants
completed an identical series of scans, which included T1- and T2-
weighted structural scans, a resting-state scan, and a five-minute n-back
task. First, whole-brain, high-resolution, T1-weighted (T1w) multi-echo
(MEMPRAGE, TR= 2530ms; TEs= 1.69, 3.55, 5.41, 7.27ms; flip angle= 7°;
resolution= 1mm isotropic) and T2-weighted (T2w) structural scans
(T2SPACE, TR= 3200ms; TE= 406ms; resolution= 1mm isotropic; turbo
factor: 282) were collected with volumetric navigators71. We collected a
T2SPACE scan52, but note that this sequence is not a pure T2w scan. The
participants viewed a nature documentary during the structural scans.
Next, a five-minute run of resting-state fMRI data was acquired (TR=
2000ms; TEs= 30.20ms; flip angle= 90°; resolution= 2mm isotropic).
Participants looked at a fixation cross throughout the scan. Resting-state
scanning continued until at least 5 min of data were acquired with
framewise displacement <0.5 mm. Finally, an n-back fMRI scan was
acquired (TR= 2000ms, TE= 30.2 ms, flip angle= 90°, voxel size= 2.0 ×
2.0 × 2.0 mm, matrix size= 96 × 96 × 75, 75 axial slices, 170 volumes, field
of view= 192mm). For both EPI sequences, the first four volumes of each
scan were automatically discarded to allow time for MRI signal to reach
steady-state.

fMRI n-back task. The fMRI n-back task consisted of four 30-s blocks
alternating between 1- and 2-back conditions with 12 trials per block. Each
block was followed by 10 s of rest. Consonant stimuli were presented for
500ms and participants were given 2000ms to respond. The fMRI n-back
task was designed as a FPS localizer; therefore, only 1- and 2-back
conditions were used during the fMRI task to maximize accuracy and
minimize confounding effects of errors. As a result, the task was not
designed to be sensitive to improvements in accuracy associated with
training. By design, accuracy on the fMRI n-back task was high at baseline
(1-back accuracy: M= 97.8%, SD= 1.9%; 2-back accuracy: M= 96.9%, SD=
3.5%), and improved from baseline to post-test only during the 2-back
condition (1-back: t= 0.96, p= 0.34; 2-back: t= 2.56, p= 0.01). Response
times on the fMRI n-back task decreased significantly with training (1-back:
t=−6.43, p < 0.0001; 2-back: t=−3.16, p= 0.002).

Data processing and analysis
Task-based fMRI analyses. Preprocessing for the task fMRI data was
implemented using FEAT (FMRI Expert Analysis Tool) Version 6.00, part of
FSL (FMRIB’s Software Library, www.fmrib.ox.ac.uk/fsl). The following steps
were applied: motion correction using MCFLIRT72, skull stripping, spatial
smoothing using a Gaussian kernel of FWHM 5mm, and high-pass
temporal filtering (100 s). Functional data were normalized to the MNI

template during a two-step process using FLIRT (FMRIB’s Linear Image
Registration Tool) in FEAT. First, each participant’s functional image was co-
registered to their anatomical T1w structural image using FSL’s Boundary-
Based Registration feature (BBR)73. Second, the anatomical image was
warped to the standard 2 mm MNI152 structural template. Finally, both of
these transformations were combined and used to normalize the
functional image to standard MNI space74. Average framewise displace-
ment across the pre-training n-back run was not significantly different from
motion across the post-training run (t= 0.25, p= 0.80). No included
participants had average head motion greater than 0.15mm across either
the pre- or post-training runs of the n-back task.
At the single-subject level, we created a general linear model (GLM)

for each participant that included the following regressors: 1- and
2-back blocks convolved with the double-gamma hemodynamic
response function and their temporal derivatives, as well as FSL’s
standard and extended motion parameters (global signal, 6 motion
parameters and their temporal derivatives, quadratic terms, and the
temporal derivatives of the quadratic terms). We conducted mixed-
effects analyses in FEAT (FLAME 1) to create group-level maps for three
contrasts (1-back greater than baseline; 2-back greater than baseline;
2-back >1-back) for Pre-training-only, Post-training-only, and Pre-
training > Post-training. Examining all three contrasts allowed us to
check that the task was activating the regions we expected based on
prior work (Supplementary Fig. 1). Group-level z-statistic images were
thresholded using clusters determined by z= 4.0 and a corrected
cluster significance threshold of p= 0.0575. Results were registered to
the Freesurfer fsaverage surface and projected to the cortical surface
using mri_vol2surf for visualization (Freesurfer v6.0)76.

Region-of-interest (ROI) definition. To identify task-active ROIs, we used
the results of the whole-brain analysis of the 2-back > 1-back contrast from
the pre-training scan at a threshold of z= 4.0. We selected the five most
significant clusters, which were within the frontoparietal system (Fig. 5): (1)
left lateral prefrontal cortex (left LPFC; MNI coordinates for center-of-
gravity: X=−37, Y= 10, Z= 41), (2) right lateral prefrontal cortex (right
LPFC; MNI coordinates for center-of-gravity: X= 29, Y= 12, Z= 52), (3)
bilateral medial prefrontal cortex (mPFC; MNI coordinates for center-of-
gravity: X=−1, Y= 16, Z= 47), (4) bilateral parietal cortex (including
medial parietal regions; MNI coordinates for center-of-gravity: X=−4,
Y=−56, Z= 48,), and (5) striatum (MNI coordinates for center-of-gravity:
X=−7, Y= 3, Z= 12). To examine whether FPS regions specifically predict
learning, we also examined two control regions: primary visual cortex and
primary motor cortex. We defined these ROIs using the pericalcarine and
precentral gyrus regions of the Harvard-Oxford probabilistic cortical
structural atlas provided through FSL.

Fig. 5 Regions of interest. Five task-based regions of interest (left lateral prefrontal cortex [LPFC], green; right LPFC, purple; medial PFC,
white; bilateral parietal cortex, blue; striatum, pink) derived from the whole-brain analysis of the 2-back >1-back contrast from the pre-training
scan at a threshold of z= 4.0. Axial slice is shown at z= 22.
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Resting-state analyses. Resting-state data were preprocessed with a
different pipeline than the one used for the task-based data in order to
incorporate Nipype, a Python-based framework specifically optimized for
flexibly integrating resting-state analysis tools77. The software packages
used in this preprocessing pipeline included FMRIB Software Library (FSL
v5.0.8)78, FreeSurfer (v6.0)76, Advanced Normalization Tools (ANTs
v2.1.0;)79, and Nipype’s implementation of Artifact Detection Tools (ART;
http://www.nitrc.org/projects/artifact_detect/). Simultaneous realignment
and slice timing correction were conducted using an algorithm
implemented in Nipy80. Outlier volumes in the resting-state data were
defined using ART based on composite motion (>0.5 mm of head
displacement between volumes) and global signal intensity (> 3 SD from
the mean). Participants had average composite head motion of <0.2 mm
(M= 0.11mm, SD= 0.06mm) across resting-state runs.
The resting-state data were then bandpass filtered (0.01–0.1 Hz),

spatially smoothed with an isotropic 6 mm Gaussian kernel (FWHM), and
normalized to the OASIS-30 Atropos template (in MNI152 2 mm space) in
a two-step process. First, the median functional image was coregistered to
the reconstructed surfaces using FreeSurfer’s bbregister;73 second, the
structural image was registered to the OASIS-30 Atropos MNI152 template
using ANTs. The transformation matrices generated by these two steps
were then concatenated, allowing images to be transformed directly from
functional to MNI space in a single interpolation step. The CSF and white
matter segmentations were derived from Freesurfer’s individual segmen-
tations of the lateral ventricles and total white matter, respectively, and
were transformed into functional space. Five principal components were
derived from both segmentations and regressed from the resting-state
data, in order to correct for physiological noise like heart rate and
respiration (aCompCor)81. At the single-subject level, the following
confounds were regressed out: 6 realignment parameters (3 translations,
3 rotations) and their first-order derivatives, outlier volumes flagged by
ART (one nuisance regressor per outlier), composite motion, 5 principal
components from aCompCor, and linear and quadratic polynomials in
order to detrend the data. Global signal was not regressed out during
these analyses.
The VTA ROI was defined using a probabilistic atlas82. The average time

series of the VTA seed was extracted from unsmoothed functional data
and correlated with the average time series from within each of the five
task-based ROIs, both before and after training. VTA connectivity with the
other ROIs was not related to age, sex, total length of scan (number of
volumes collected) or the number of ART outliers (p-values >0.05);
nonetheless, we controlled for these measures in all models to ensure that
they did not drive relationships with learning. All results of resting-state
analyses are the same with and without these covariates of no interest.

Myelin maps. We calculated the ratio between each participant’s T1w and
T2w images to create subject-specific myelin-enhanced contrast images
(“myelin maps”)52 using the publicly available MRTool toolbox (version
1.4.3; https://www.nitrc.org/projects/mrtool/) for SPM1251,83.
The steps taken by MRTool to generate each participant’s myelin map

are delineated below. First, each participant’s T2w image was coregistered
to their T1w image using a rigid-body transformation12,84. Both images
then underwent bias correction to ensure spatial equalization of the coil
sensitivity profiles. The intensity inhomogeneity correction tool in SPM12
was separately used on both images to correct for transmission-field
inhomogeneities in image intensity and contrast12. Subsequently, the
intensity values of both bias-corrected images were separately standar-
dized using a non-linear external calibration approach (MRTool image
calibration option #1: Non-linear histogram matching—external calibra-
tion), in order to accurately capture inter-individual differences in myelin
contrast51,83. This was a three-step process: (i) subject-specific masks
corresponding to CSF, skull, and soft tissues (i.e., dura mater) were
extracted using SPM’s Segmentation tool in both anatomical (T1w) and
template (MNI) space, (ii) intensity histograms for all three masks were
generated in both spaces and a non-linear mapping function (cubic spline
interpolation) between them was computed, and (iii) the corresponding
cubic polynomial was used to calibrate the intensities of the bias-corrected
T1w and T2w images. Lastly, the ratio between each participant’s bias-
corrected and calibrated T1w and T2w images was calculated, as a proxy
for their corresponding “myelin map”.52

We then masked out CSF and white matter (as defined by individual
segmentations in Freesurfer’s LookUp Table)85–87 from the myelin maps to
ensure that extracted values for the ROIs reflected only gray matter. The
five task-based ROIs (created in MNI space) were inverse-transformed to
each subject’s structural space with ANTs79. Finally, myelin map values

(T1w/T2w ratio intensities) were extracted from each ROI for each subject,
both before and after training.

Statistical analyses. All statistical analyses were performed using R
(version 4.05) and RStudio (version 1.4.1106) software (R Foundation for
Statistical Computing, Vienna, Austria). We used linear models to predict
learning gains (change in accuracy and response time on the n-back task)
with resting-state functional connectivity (rsFC) between VTA and each
ROI, and with T1w/T2w ratios in each ROI. The VTA connectivity models
included the following covariates: age, sex, baseline n-back task
performance, motion during the baseline resting-state fMRI scan, and
the number of volumes acquired during the baseline resting-state fMRI
scan. The T1w/T2w ratio models included the following covariates: age,
sex, and baseline n-back task performance. All results underwent FDR-
correction in R for 28 tests (7 ROIs [5 task-based, 2 control]), 2 learning
measures [accuracy, response time], and 2 neural measures [VTA rsFC,
T1w/T2w ratio].

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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